STM32 Nucleo-F401RE

Support for the STM32 Nucleo-F401RE.

Overview

The Nucleo-F401 is a board from ST’s Nucleo family supporting a ARM Cortex-M4 STM32F401RE microcontroller with 96Kb of SRAM and 512Kb of ROM Flash.

Hardware

MCU

MCU STM32F401RE
Family ARM Cortex-M4
Vendor ST Microelectronics
RAM 96Kb
Flash 512Kb
Frequency up to 84MHz
FPU yes
Timers 11 (2x watchdog, 1 SysTick, 6x 16-bit, 2x 32-bit [TIM2])
ADCs 1x 12-bit
UARTs 3
SPIs 4
I2Cs 3
RTC 1
Vcc 2.0V - 3.6V
Datasheet Datasheet
Reference Manual Reference Manual
Programming Manual Programming Manual
Board Manual Board Manual

MCU

MCU STM32F401RE
Family ARM Cortex-M4
Vendor ST Microelectronics
RAM 96Kb
Flash 512Kb
Frequency up to 84MHz
FPU yes
Timers 11 (2x watchdog, 1 SysTick, 6x 16-bit, 2x 32-bit [TIM2])
ADCs 1x 12-bit
UARTs 3
SPIs 4
I2Cs 3
RTC 1
Vcc 2.0V - 3.6V
Datasheet Datasheet
Reference Manual Reference Manual
Programming Manual Programming Manual
Board Manual Board Manual

Implementation Status

Device ID Supported Comments
MCU STM32F401RE partly Energy saving modes not fully utilized
Low-level driver GPIO yes
PWM yes (7 pins available))
UART 2 UARTs USART2 via STLink/USB or D0(RX)/D1(TX) and USART6 on PA12(RX)/PA11(TX)
I2C 1 I2C
SPI 1 SPI
USB no
Timer 2 32 bit timers

Flashing the device

The ST Nucleo-F401RE board includes an on-board ST-LINK V2 programmer. The easiest way to program the board is to use OpenOCD. Once you have installed OpenOCD (look here for installation instructions), you can flash the board simply by typing

1
make BOARD=nucleo-f401 flash
and debug via GDB by simply typing
1
make BOARD=nucleo-f401 debug

Supported Toolchains

For using the ST Nucleo-F401 board we strongly recommend the usage of the GNU Tools for ARM Embedded Processors toolchain.

Issues with old Hardware Revisions

Some Nucleo 64 Boards come in different hardware revisions, which is located on a sticker at the backside of the board. As discussed in issue #6721, there are some issues with the external clock sources in revisions smaller than C-03. (This would also be true for all boards with board ID MB1136). The revision C-01 has a different configuration for the high speed external clock (HSE), which is used in RIOT. This could be fixed by reconfiguring some solder bridges as mentioned in the user manual, section 6.7.1. The other issue is, that revision C-01 also has no 32kHz oscillator, so the RTC module of RIOT cannot be used.

CLOCK_CORECLOCK
1
(84000000U)
CLOCK_HSE
1
(8000000U)
CLOCK_LSE
1
(1)
CLOCK_AHB_DIV
1
RCC_CFGR_HPRE_DIV1
CLOCK_AHB
1
(CLOCK_CORECLOCK / 1)
CLOCK_APB1_DIV
1
RCC_CFGR_PPRE1_DIV2     /* max 42MHz */
CLOCK_APB1
1
(CLOCK_CORECLOCK / 2)
CLOCK_APB2_DIV
1
RCC_CFGR_PPRE2_DIV1     /* max 84MHz */
CLOCK_APB2
1
(CLOCK_CORECLOCK / 1)
CLOCK_PLL_M
1
(4)
CLOCK_PLL_N
1
(168)
CLOCK_PLL_P
1
(4)
CLOCK_PLL_Q
1
(7)
const timer_conf_t timer_config()
1
2
3
4
5
6
7
8
9
= {
    {
        .dev      = TIM5,
        .max      = 0xffffffff,
        .rcc_mask = RCC_APB1ENR_TIM5EN,
        .bus      = APB1,
        .irqn     = TIM5_IRQn
    }
}
TIMER_0_ISR
1
isr_tim5
TIMER_NUMOF
1
(sizeof(timer_config) / sizeof(timer_config[0]))
const uart_conf_t uart_config()
UART_0_ISR
1
(isr_usart2)
UART_0_DMA_ISR
1
(isr_dma1_stream6)
UART_1_ISR
1
(isr_usart1)
UART_1_DMA_ISR
1
(isr_dma1_stream6)
UART_2_ISR
1
(isr_usart6)
UART_2_DMA_ISR
1
(isr_dma1_stream6)
UART_NUMOF
1
(sizeof(uart_config) / sizeof(uart_config[0]))
const pwm_conf_t pwm_config()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
= {
    {
        .dev      = TIM2,
        .rcc_mask = RCC_APB1ENR_TIM2EN,
        .chan     = { { .pin = GPIO_PIN(PORT_A, 15)         , .cc_chan = 0 },
                      { .pin = GPIO_PIN(PORT_B, 3)  , .cc_chan = 1 },
                      { .pin = GPIO_PIN(PORT_B, 10) , .cc_chan = 2 },
                      { .pin = GPIO_UNDEF,                    .cc_chan = 0 } },
        .af       = GPIO_AF1,
        .bus      = APB1
    },
}
PWM_NUMOF
1
(sizeof(pwm_config) / sizeof(pwm_config[0]))
const qdec_conf_t qdec_config()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
= {
    {
        .dev      = TIM3,
        .max      = 0xffffffff,
        .rcc_mask = RCC_APB1ENR_TIM3EN,
        .chan     = { { .pin = GPIO_PIN(PORT_A, 6),             .cc_chan = 0 },
                      { .pin = GPIO_PIN(PORT_A, 7),             .cc_chan = 1 } },
        .af       = GPIO_AF2,
        .bus      = APB1,
        .irqn     = TIM3_IRQn
    },
    {
        .dev      = TIM4,
        .max      = 0xffffffff,
        .rcc_mask = RCC_APB1ENR_TIM4EN,
        .chan     = { { .pin = GPIO_PIN(PORT_B, 6),             .cc_chan = 0 },
                      { .pin = GPIO_PIN(PORT_B, 7),             .cc_chan = 1 } },
        .af       = GPIO_AF2,
        .bus      = APB1,
        .irqn     = TIM4_IRQn
    },
}
QDEC_0_ISR
1
isr_tim3
QDEC_1_ISR
1
isr_tim4
QDEC_NUMOF
1
(sizeof(qdec_config) / sizeof(qdec_config[0]))
const uint8_t spi_divtable()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
= {
    {       
        7,  
        6,  
        4,  
        2,  
        1   
    },
    {       
        7,  
        7,  
        5,  
        3,  
        2   
    }
}
const spi_conf_t spi_config()
SPI_NUMOF
1
(sizeof(spi_config) / sizeof(spi_config[0]))
const i2c_conf_t i2c_config()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
= {
    {
        .dev            = I2C1,
        .speed          = I2C_SPEED_NORMAL,
        .scl_pin        = GPIO_PIN(PORT_B, 8),
        .sda_pin        = GPIO_PIN(PORT_B, 9),
        .scl_af         = GPIO_AF4,
        .sda_af         = GPIO_AF4,
        .bus            = APB1,
        .rcc_mask       = RCC_APB1ENR_I2C1EN,
        .clk            = CLOCK_APB1,
        .irqn           = I2C1_EV_IRQn
    }
}
I2C_0_ISR
1
isr_i2c1_ev
I2C_NUMOF
1
(sizeof(i2c_config) / sizeof(i2c_config[0]))
ADC_NUMOF
1
(6U)
ADC_CONFIG
1
2
3
4
5
6
7
8
{             \
    {GPIO_PIN(PORT_A, 0), 0, 0}, \
    {GPIO_PIN(PORT_A, 1), 0, 1}, \
    {GPIO_PIN(PORT_A, 4), 0, 4}, \
    {GPIO_PIN(PORT_B, 0), 0, 8}, \
    {GPIO_PIN(PORT_C, 1), 0, 11}, \
    {GPIO_PIN(PORT_C, 0), 0, 10}, \
}
RTC_NUMOF
1
(1)